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ABSTRACT

We propose a novel technique for event geo-localization (i.e.
2-D location of the event on the surface of the earth) from
the sensor metadata of crowd-sourced videos collected from
smartphone devices. With the help of sensors available in
the smartphone devices, such as digital compass and GPS
receiver, we collect metadata information such as camera
viewing direction and location along with the video. The
event localization is then posed as a constrained optimiza-
tion problem using available sensor metadata. Our results
on the collected experimental data shows correct localization
of events, which is particularly challenging for classical vi-
sion based methods because of the nature of the visual data.
Since we only use sensor metadata in our approach, compu-
tational overhead is much less compared to what would be if
video information is used. At the end, we illustrate the ben-
efits of our work in analyzing the video data from multiple
sources through geo-localization.

CCS Concepts

eMathematics of computing — Convex optimization;
eHuman-centered computing — Social media; Smart-
phones; eComputing methodologies — Interest point
and salient region detections; Tracking;

Keywords

Event localization, Smartphone, Digital Compass, Optimiza-
tion, GPS

1. INTRODUCTION

The smartphone users generate a huge amount of data in
the form of images and videos. This data is often stored
on cloud-servers like Youtube, Vimeo, Flickr and Google-
Panoramio for sharing and possible future usages. There
are various methods available in the literature for process-
ing such a video information, for example, video summa-
rization, object detection and tracking, action recognition,
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Figure 1: The estimated event track using metadata from the
videos from five users is shown. Event location within the frames
is highlighted using a window. Corresponding event track (yellow)
and ground truth (red) are shown overlaid on Google Map.

event detection and structure recovery. These methods rely
on visual information captured by cameras.

However, all smartphones are equipped with a variety
of sensors these days. Therefore, it is possible to capture
various metadata information from sensors like GPS, dig-
ital compass, inertial measurement unit (IMU) and time
stamps, along with videos. Use of this metadata information
along with the camera often results in an improved perfor-
mance for certain specific tasks, like videos and images can
be grouped and retrieved using geo-tags for region based
content retrieval systems [5, 2]. In [12, 15], collections
of geo-tagged photos from Flickr and Panoramio are used
to find popular tourist destinations. Metadata information
such as GPS and time at which a photo was taken is used to
build a tourist recommendation system. In [8], a query im-
age from the user is compared with representative images
found for a given region from geo-tagged images to pro-
duce tourist recommendations. Different modalities of geo-
tagged media and their applications in event or landmark
understanding, recognition, summarization, media organi-
zation and retrieval and data mining have been discussed
in [16]. In [18], visual summaries of a given geographical
region are produced using geo-tagged photos. In [10], pop-
ular regions and objects are detected and geo-located from
crowd-sourced video metadata based on densities of camera
viewing directions. In [4], sensor metadata from GPS, IMU,
and compass is used along with visual data to improve user
localization for an augmented-reality application. In [21],
orientation information from compass is used to create rota-
tion aware feature descriptor which are used for 3-D tracking
of camera. Metadata from IMU has been used for improve-
ment in SIFT feature matching in [13]. Different ways of
fusing IMU data with the video for 3D tracking in an ex-



tended kalman filter framework is presented and an improve-
ment in the accuracy of tracking have been demonstrated
in [9]. Improved structure-from-motion (SFM) methods us-
ing metadata have been proposed in [11, 17]. GPS and IMU
measurements are used as a prior to speed up structure re-
covery in [11]. A fast SFM algorithm is proposed in [17]
using data from IMU. Key frame selection based on sen-
sor metadata is proposed for structure recovery from videos
in [19].

Thus one can be sure that the sensor metadata often cap-
tures information which can be used effectively to improve
performance of the existing systems in many ways. With
the increasing use of smartphones, we observe that many
popular events, such as a concert, an exhibition or a pa-
rade, are often video recorded by many people at the same
time. In general, one can define an event to be a moving or
a stationary object which is recorded by many people at the
same time. For example, Fig. 1 shows an illustration of an
event recording scenario where five different users are video
recording the event (a person in this case). Such collection
of videos can be processed for event detection and track-
ing using classical algorithms. However, processing multiple
views from different uncalibrated cameras is computation
intensive and mathematically very difficult as camera poses,
locations, color balances and mappings are all unknown. In
case of Fig. 1, we have observed that there are hardly any
feature matches among different views for detailed mathe-
matical analysis. Since sensors can reveal some information
about the camera such as location and orientation, this ad-
ditional information can be leveraged.

The sensor metadata, however, is highly corrupted with
the noise. In practical scenarios, users may not record the
event properly due to human errors and distractions. Some
users are not interested in a particular event and are record-
ing something else. Under these conditions, utilizing meta-
data for event localization is a challenging task, hence, a
proper mathematical formulation is necessary. We propose a
mathematical formulation to geo-locate and track the event
using sensor metadata associated with the crowd sourced
videos. We rely on the location and orientation metadata
obtained from the sensors available in common smartphone
devices. Since we do not process any video data, the com-
putational requirement is negligible.

Specific contributions of our work are as follows:

1. We pose event geo-localization as a convex optimiza-
tion problem with the help of sensor metadata,

2. We provide a framework for handling sensor noise and
detecting instantaneous camera locations and orienta-
tions,

3. We also provide a technique for smooth tracking of the
event over a given period time,

4. Finally, we demonstrate the usefulness of the metadata
in simplifying a typical computer vision problem.

2. PROBLEM FORMULATION

We use (Cy,;,Cy;) to denote the measured location and
®; to denote the measured orientation of the j** camera in
a 2-D plane (i.e. camera pointing/viewing direction on the
ground plane, we will use terms viewing direction and orien-
tation interchangeably) obtained from sensor metadata. We
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Figure 2: Cameras and their viewing directions are shown un-
der the influence of noise. For the noise-free case and when
the users are engrossed along the true viewing direction, all rays
converge trivially at the event location (X,Y’). Dashed red line
shows viewing direction corresponding to the estimated parame-
ters (x5,y;, ¢;) for one of the cameras (4" camera in this case).

The perpendicular distance D; from viewing direction ¢; of the

jt" camera to the event location (X,Y) is shown. d; denotes the

distance between a camera location and perpendicular from event
location (X,Y’) on viewing direction.

denote this metadata of j** camera by a tuple (Cay, Cy;, @)
The corresponding estimates of the underlying true cam-
era location and orientation are denoted by (z;,y;) and ¢;,
respectively. We denote the event location on the ground
plane as the latitude-longitude data by (X,Y). The corre-
sponding time varying quantities are given by augmenting
with the argument ¢ (for e.g. Cy,(4),Cy, (1) and ®;(3)). The
event localization problem can then be stated as follows

Given a set of N independent videos with noisy sensor
metadata collections (Cy,, Cy,, ®;) for j = 1,..., N, find the
event geo-location (X,Y’), and geo-location and orientation
(zj,y;,¢;) for each camera i.e. for j =1,...,N.

Similarly, the event tracking problem involves estimating
all above quantities, (X,Y) and {(a:j,yj,qﬁj)}\;jv over a
time period ¢ = 1 to 7" when the corresponding temporal
measurements Cy; (7),Cy, (i) and ®;(i) are available.

3. COLLECTING SENSOR METADATA

All modern smartphones are equipped with a GPS receiver
and a digital compass. However, there are significant errors
in the measurements from these sensors in smartphone de-
vices. For example, accuracy of GPS is limited because of
multi-path reception, atmospheric attenuation, satellite lo-
cation errors and clock drift. Digital compass in the smart-
phones relies on accelerometer and magnetic sensor. Fast
dynamic motion of the camera and the magnetic interference
from the surrounding are the major causes of noise in the
digital compass. When an event is video recorded by vari-
ous users, the location and orientation metadata along with
timestamps can also be recorded using GPS and comapss.
This information, i.e. video along with the metadata (GPS
location, compass orientation and timestamps) can be up-
loaded to the cloud server for event localization.

4. PROPOSED APPROACH

Under noise free conditions and when all the cameras are



pointing in at the event, the event can be localized as the
intersection of the rays originating from camera locations,
with viewing directions given by camera orientation. Un-
der ideal conditions data from only two cameras is enough
to geo-localize the event. However, with the noisy meta-
data, camera locations and orientations are not known with
enough accuracy. A typical scenario is shown in the Fig. 2
where all cameras are crudely pointing in the direction of
the event. Hence one have to pose the event localization as
an optimization problem.

Viewing direction for the j** camera can be expressed
using the equation of a line as a;z +b;y+ 1 = 0 as shown in

Fig. 2. We can find parameters a; and b; using GPS location
—cos P,
ij cos 7Cyj sin @

(Cz;,Cy;) and orientation ®; as a; =

sin @ ;
and b; = L .
J Cu; cos®;—Cy, sin ®;

The perpendicular distance

D; from event location (X,Y) to the viewing direction of
the j*" camera is given by

Dj =|(Ca; — X)cos®; + (Y — Cy,)sin®;) . (1)

When viewing directions do not intersect at a single point,
we define the event location to be a point that minimizes sum
of square of perpendicular distances from all viewing direc-
tions. Thus event location can be defined as a minimizer of
cost function

N
argl}(l,i}r} Zl((Czj —X)cos®; + (Y — Cy].)sin<1>j)2 . (2
i=

However, such an estimate of the event is not reliable.
Whenever there is a large error in the orientation ®; or
in the GPS data (Cy,,C,,), the corresponding estimate of
event location is very poor. Hence we estimate camera pa-
rameters (location and orientation) and use these estimated
parameters for event localization which will result in a more
reliable and correct event location.

S. CONSTRAINED ROBUST ESTIMATOR

Since the camera metadata can be highly erroneous some-
times, it is required to generate an estimate of underlying
true camera parameters (z;,y;, ;) for each camera which
can be used for event localization. We estimate these param-
eters along with the event location using the same cost func-
tion in equation (2). We replace metadata tuple (Cy,, Cy,, ®;)
from the cost function with the corresponding estimates
(4,95, ¢;). We now minimize this cost functions with re-
spect to (X,Y) and (z;,y;,¢;)|}_, instead of just (X,Y).

The cost function now gets modified to following

N

arg min Y ((z; — X)cos¢; + (Y —y;)sing;)” . (3)

X, Y,xj, £
Yj:®;V3 J=1
Since the terms in the above cost function involve only

unknowns, it is an ill-posed problem and there are infinitely
many possible solutions. To restrict the solution space and
bring it close to the true solution, we can use metadata mea-
surements. We use sensor metadata to develop constraints
on (z;,y;,¢;), thus restricting the range of solutions.

5.1 Constraining Camera Location

The GPS receivers available in smartphone devices also
provide reliability of the current location as an accuracy pa-
rameter which can be treated as the variance of a Gaussian

perturbation [1]. We denote the accuracy parameter of loca-
tion for the j*"* camera by o;. Therefore the probability of
a true location (z;,y;) is given by a Gaussian Distribution
with mean (Cy;, Cy;) and variance o?. We restrict the range
of (x5, y;) within a circle of radius o; around (Cx;, Cy,). The
true camera location lies in this region with 46% probability.
This constraint can be expressed as

(zj — Ca))* + (y; — Cy,)* < 07 . (4)

5.2 Constraining Camera Viewing Directions

Unlike GPS, there is no available measure of accuracy for
the orientation obtained from the digital compass. To the
best of our knowledge there are no methods available to
recover correct orientation from a single stand-alone uncal-
ibrated compass. Based on our experience with the digital
compass in the smartphones, we propose an empirical for-
mula to estimate the amount of error in the orientation based
on magnetic interference. Strength of the earth’s magnetic
field remains quite stable over a given geographical region.
Any kind of interference will affect the strength of the field
measured by the magnetometer. One can take deviation of
the measured field from its standard value as a measure of
error. We choose the inverse bell shaped curve to measure
the error as

he—hm\2

AP = rnin{ﬂ'7 ¢0 —+ )\6< Th ) } s (5)

where h. is the typical earths magnetic field strength, h.,
is the strength of the field measured by magnetometer. Pa-
rameters ¢o, A and o, are chosen appropriately. It may be
noted that ideally A® should be within a few degrees. Un-
fortunately, most commercially available sensors in smart-
phones are very prone to large errors [20]. We use A®; to
define constraints on orientation estimation ¢; for the j
camera as shown below

B, — AD; < ¢; < D, + AD; . (6)

The camera parameter estimates (z;,y;) and ¢; must sat-
isfy the constraints from equation (4) and (6).

6. CONVEX OPTIMIZATION

Minimization of equation (3) is a non-convex problem be-
cause of involvement of transcendental terms. In this sec-
tion, we introduce a slack variable and formulate a convex
cost function. As shown in Fig. 2, let d; denote the distance
between camera location (z;,y;) and the projection of the
event location (X,Y’) on the viewing direction ¢;. This pro-
jection has a coordinate (d; sin ¢;, d; cos ¢;) with respect to
the camera location. The perpendicular distance from the
event location to the viewing direction D; is given as

Dj=+/(X —z; —d;sing;)2+ (Y —y; —d;jcos$;)? . (7)

Representing the co-ordinates (d; sin ¢;, d; cos ¢;) by (24, , ya; )
the above equation can be written as

Dj:\/(Xfwjfmd,-)QJr(Y*yj*ydj)?. (8)

This representation does not involve trigonometric terms
and hence is convex in terms of variables. The final con-
vex cost function is

N

. 2 2
arg  min > (X —w;—24,)" + (Y~ - 32)" . (9)
@a;a; 95 9!




Figure 3: The gray region shows constraints on the viewing direc-
tions based on the orientation error A®;. The arcs of the circle
corresponding to maximum and minimum visible distances are
also shown. The intersection of area between arc of the circles
with gray region is shown as dark-gray region which corresponds
to the constraints on (xdj , yd].)

However, the variables x4, and y4; are not independent
and one requires different constraints to solve the problem.

6.1 Redefining the Constraints

We have removed trigonometric terms from the cost func-
tion involving ¢; by introducing additional variables x4, and
Ya;- By construction, the point (:Edj , ydj) lies on the camera
viewing direction given by ¢;, which in turn is constrained
by equation (6). Figure 3 shows constraints on ¢; as a cone
with the vertex at (z;,y;), which can be seen as an inter-
section of two half-spaces shown as the gray region in the
figure. Camera viewing direction must lie in this region.
Since point (4;,ya;) must also lie in the same region, we
have following two constraints on x4; and ya;

—Z4; €08 Prin; + Yd; SN Prnin,; <0, (10)

Za; €08 Praz; — Yd; SN Prnas; <0, (11)

where q:'minj = @j — A‘i'] and (I)mamj = (I)j + A‘I‘]

We also put additional constraints on these variables know-
ing that the maximum visible distance (dmaz) of a camera
is limited to few tens of meters. Further, since the event
cannot be closer to the camera than a certain distance, we
consider a minimum visible distance (dm:n) as well. Thus,
following are two more constraints on these variables

dznzn S 133]' + yij S d?naz . (12)

The first inequality in the equation (12) gives a non-convex
constraints which corresponds to the exterior of a circle at
(z4,y;) with a radius of dmin as shown in Fig. 3. This con-
straint is generally difficult to solve. Hence we approximate
the arc of the circle by a straight line tangent at point A, as
shown in Fig. 3. The corresponding constraint is

—xq; sin ®; — yq, cos ®; < —dmin - (13)

The estimate must lie within the overall intersection area
shaded dark gray in Fig. 3. We now summarize our final
cost function and corresponding constraints. We minimize
the cost function given in equation (9) with respect to the
event location (X,Y’) and parameters (l'j,gjj,fvdj,ydj)'év:l

which are all unknowns.

N
arg 1)1(11;1 Z(X —zj — a:dj)2 + Y -y — ydj)2 , (14)
xjyi, J=1
Ta;Yd; Vi

The constraints on the camera parameters are given by

(2j — Cu))” + (y; — Cy))* < 03, Vi, 15

—Tq; COS <I>mmj + ya, sin ‘I)mmj <0, Vj, 16

$dj COS (b’mazj — yd]. sin (I)mazj S 0, vj ) 17

(15)
(16)
(17)
z3, + e, < dmas, Vi (18)

—x4; 8in ®; — ya; cos ®; < —dymin, Vj . (19)

So we have formulated convex cost free from transcenden-
tal terms by introducing a slack variable. The constraints
were modified accordingly and approximations were intro-
duced to have convexity in the constraints. Minimizing
equation (14) is a standard constrained optimization prob-
lem. There are many algorithms available to solve this class
of problems and interior-point methods are very popular ap-
proach [7]. We use python implementation of this algorithm
(cvzopt) [3] for solving this problem.

6.2 Event Tracking

For the purpose of event tracking, one may solve the cost
function in equation (14) at each time instant. Unfortu-
nately, sudden large errors commonly associated with the
metadata means weaker constraints on the camera param-
eters. As a result, the resultant event-track appears very
discontinuous and noisy. This problem can be overcome by
jointly minimizing the cost functions for each time instant
along with smoothness terms so that resultant solution give
a smooth event track.

We introduce an additional suffix ¢ for all variables to de-
note time instant. We denote by 7" the total number of meta-
data samples. Sensor data sampled at the i*" time instant
from the j*" camera is represented by a tuple (Cajir Cyyi, i)
and corresponding unknowns are (X;,Yi, Zji, Yji, Td;;» Yd;,)-

The cost function from equation (14) now changes as

arg ml}I/l Z (XZ Lji :Cdji) + (YZ Yji ydji) +
Zj;:y;7’7 V3, Vi
Tdy; o Yd,
Vji
T
A1 Z{(Xz — Xi71)2 +(Y; — Yz'f1)2}+
i—2
T
XYY f@si — m5im1)? + (i — viim1)
vj i=2

A3 Z Z{(xdﬂ - xdji—1)2 + (ydji - ydjifl)Q} (20)

Vi =2

The constraint equations (15-19) remain the same. The last
three terms in the cost function impose smoothness on the
event locations (X, Y;) and camera parameters (z;;, y;:) and
(®d,;,Ya;; ), respectively. When there are N cameras record-
ing the event and 7" number of metadata samples, we have to
solve for (2T + 4NT') variables along with 5NT constraints
which is a difficult task. To get around this problem we solve
for the event locations successively for each time instant.
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Figure 4: Illustration of generating metadata for a typical event
recording scenario. The event location, event trajectory and cam-
era locations (black dots) and orientations (black arrows) are
overlaid on Google Map view.

7. SOURCING CROWD DATA

In order to validate the proposed method, one requires
to identify a cloud where event video recordings by general
crowd is available. Zimmermann et al. [2] have created and
maintained one such data base. The videos and correspond-
ing metadata are freely accessible through web portal and
API’s with the help of geo-location and time queries. To col-
lect data, Zimmermann et al. have developed a smartphone
application GeoVid Recorder for android and iOS platforms.
The application records videos at 15-30 fps and collects sen-
sor metadata at 5Hz frequency, which is then uploaded to
the GeoVid server. There are more than 2500 videos up-
loaded to this server, with most of the videos being captured
at different location and different time.

We create an event recording scenario at our university
campus to collect experimental data along with the ground
truth. In our experiments, we take an event to be a person.
In a real scenario, an event could be a concert, a protest
march or a sports-person on the field. We envisage these
scenarios for the purpose of collecting ground truthed exper-
imental data as shown in Fig. 4. A volunteer performs an
event while carrying a smartphone and recording the meta-
data using the GeoVid Recorder application while other vol-
unteers record the actual event (a volunteer) using the same
application. Finally the data is uploaded to the server. The
location ground truth is now made available from the GPS
data of the performer.

8. EXPERIMENTAL ANALYSIS

8.1 Baseline Comparison

We use the work presented in [10] for a baseline compari-
son. In this work, all the viewing directions from the videos
captured over large duration of time are considered, all to-
gether, for estimating the event location. The intersections
between all pairs of viewing directions are computed and a
clustering method is used over these points to localize the
event and generate overall shape of the event. This approach
is particularly suitable for estimating static events such as
famous tourist locations and landmarks and needs a larger
dataset. We modified this method to consider only those
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Figure 5: Estimated event trajectories using proposed method
and [10] along with GPS data for event location are shown in
(a)-(e). Average camera locations during the experiments are
shown using black stars. Event trajectory is shown overlaid on
the Google Map region of size 100mx100m in (f) for qualitative
evaluation, the GPS data is shown in red and our estimation is
shown in yellow.

viewing directions which are generated at the same time.
We compute intersection points for these viewing directions
from all the cameras. In the original method, a clustering al-
gorithm is used to get overall region of the event. However,
since we are interested in the event location, we compute
mean of the intersection points as event location estimate.

8.2 Comparative analysis along with available
GPS data for event location

We substantiate the performance of the proposed algo-
rithm on various experimental data. We show the compar-
ative analysis for the experiments where GPS track of the
event was available to serve as a possible ground truth, de-
tails of which are shown in Table 1. Second and third rows
of the table show the number of cameras recording the event
and the common duration of the recording, respectively.

Exp. No. 1 2 3 4 5
No. of Cameras || 6 7 7 5 12
Duration (s) 21 46 42 83 37

Table 1: Details of the experiments with the availability of the
GPS track of the event is shown.



The estimated event tracks along with the available GPS
track for the five experiments are shown in Fig. 5. The
GPS trajectory is shown as green curve in the figure, es-
timated event tracks using proposed method are shown in
blue and the same using [10] are shown in red. One may note
that event tracks generated using [10] are very discontinuous
where as proposed method naturally generated smooth event
track. Furthermore, proposed approach also estimates cam-
era parameters. The figures clearly show that our method
is successfully able to generate the smooth event trajectory
and is superior than [10].

In the experiment 4, all the cameras recording the event
were also moving along with the event. For experiments 1-
3, one camera had very noisy compass data which resulted
in completely false camera orientation metadata, however,
the correct orientation is recovered using proposed method.
The experiment 5 had large number of outliers present which
corresponds to human errors and distractions etc. Roughly
8 cameras in this experiment were pointed elsewhere (not
looking at the event) for the duration ranging from 2 sec.
to 13 sec. at different time instants. In Fig. 5e we see that
correct event track is recovered, and it is clear that proposed
method is quite robust to the outliers. The Fig. 5f show the
estimated event track and GPS ground truth for experiment
5 overlaid on the Google Map for illustration, which is used
for qualitative assertion of the estimated event track.

8.3 Analysis in absence of ground truth

Fig. 6 shows video frames from some of the cameras for
the 4 experiments for which no GPS data for the event lo-
cation was available. Each row in the figure corresponds
to the individual experiment. First four images show views
from some of the cameras for respective experiments and
the last image show the estimated event track. The event
is captured by 7, 10, 5 and 5 cameras and the duration of
the experiments are 93, 63, 15 and 82 seconds, respectively.
For experiments 3 and 4, the event is more or less stationary
which is correctly estimated as can be seen in the last col-
umn of 3rd and 4th row. For both these experiments, there
are 1 and 2 cameras, respectively, with very noisy compass
metadata and a single camera outlier. For experiment 4, an
outlier camera is constantly panning from left-to-right and
from right-to-left many times for around 50 seconds during
the experiment. One can notice that even in the presence
of both outlier and noisy metadata, the event is successfully
localized.

One can verify the correctness of event location with the
help of available videos by computing instantaneous event
position in the video frame. In order to locate the event
within the video frame, one needs to know the position of
the event in the camera field of view on the 2-D plane. We
model the camera field of view using a pie-slice shape [6]
with 50° as the camera field of view. Once an event is geo-
localized, its position in the field of view is used to find
the corresponding position of the event in the video frame
using smaller window as shown in Fig. 6. The size of the
window is chosen appropriately for these experiments and
is varied as per the estimated distance between the camera
and the event. We use these windows in the video frames
to qualitatively verify that the event is correctly captured
within these windows as seen in Fig. 6.

8.4 Validating Camera Parameter

Figure 7: Estimated event tracks and the camera parameters for
experiment 1 from Fig. 6 are shown in the figure. Camera loca-
tions are shown as green dots and viewing directions are shown as
green arrows. The left figure shows event location estimates when
camera parameters are fixed to the values of sensor metadata. In
the right figure, both camera parameters and event location are
estimated. Event track is shown in yellow.

In order to substantiate the validity of the estimated cam-
era parameters, we compare estimated event track using pro-
posed method with the track estimated without including
camera parameters as part of the estimation process. The
parameters are instead fixed to the values obtained from
sensor metadata.

The resultant event track along with camera parameters
(fixed to sensor metadata) for experiment 1 from Fig. 6 are
shown in the Fig. 7(a). In Fig. 7(b), we show estimated event
track using proposed method. The volunteer carrying out
this event followed a path around the edges of the lawn which
is recovered correctly as seen in Fig. 7(b). We also show the
camera parameters at a particular time instant near the end
of the experiment for both the cases. In the left figure,
the camera parameters clearly appear to be little random
because of noisy metadata, where as in the other figure, all
the viewing directions correctly point at the event which is
verified by inspecting the corresponding video frames.

8.5 Metadata Driven Image Analysis

In this section we demonstrate how the result of event
tracking and geo-localization can help expedite the analy-
sis of crowd sourced video data. As motivated earlier one
may like to do a video analysis of the event (say, a street
performer). To recognize the same performer in different
views in absence of any other information, one can use im-
age co-segmentation to extract the common object of in-
terest in multiple views. Image co-segmentation is defined
as a problem of segmenting an object from multiple im-
ages with similar features. We use the state-of-the art im-
age co-segmentation method [14] on the video data and the
results are shown in Fig. 8a. Here one captures predomi-
nantly the background, but fails to identify the performer
(i.e. event). In Fig. 8¢ we show the results obtained using
the window estimates shown in Fig. 8b with the help of event
geo-localization (as illustrated in Fig. 1 and 6). One can no-
tice that the background is drastically reduced compared to
the earlier case and the event segmented successfully, which
can then be used for further semantic analysis.

8.6 Computational Requirements

We calculate the computational requirements in terms
of an average time taken to solve the cost function from
equation (20) under respective constraints. The equation is



Figure 6: Experimental results when GPS data of the event location is not available are shown along the rows. Fig. (a)-(d) in a single
row show some of the video frames for individual experiments. Event position in the frame is highlighted by a window using an approach
described in section 8.3. In last column estimated event track along with camera parameters are shown.

(b) (c)

Figure 8: (a): First row shows the set of video frames from one of our experiments used for visual event identification. Second row shows
co-segmentation results on these frames using [14]. (b): Cropped video frames from part (a) are shown. Frames are cropped based on
the estimated window within the video frame using event localization. (c): Corresponding co-segmentation results for (b) are shown.
One can notice a drastic reduction in the background.

solved for each time instant for the experiment and average used intel core-i7 machine running at 3.4GHz with 32GB
time required to localize the event is computed. We have memory for our experimentation. The average time required



Figure 9: Computational time required for the event localization
is plotted as a function of no. of available cameras.

is plotted in Fig. 9 as a function of the number of cameras.
The plot show computational requirement grows linearly as
a function of number of cameras. One can see from the figure
that overall complexity is much less (100-300 msec) which
suggests possible real-time application. Since the size of the
metadata is very low, users can upload it to the cloud server
in a real-time without much difficulties which can then be
processed for event localization and a feedback to the users
can be provided in a real-time such as how efficiently a user
might be capturing the event.

9. CONCLUSIONS

We have shown that with the help of sensor metadata, the
event localization can be posed as an optimization problem
with a convex cost function and a set of convex constraints
and can be solved with a reasonably good accuracy. The
computational requirements are much less which is suitable
for necessary real time applications. For the challenging
visual data, such as videos recorded from smartphones, pro-
posed approach is particularly useful where classical vision
based approaches might fail or requires large amount of com-
putations. In such cases, the proposed work can result in
various hybrid algorithms where the performance of tradi-
tional algorithms can be improved in terms of accuracy and
complexity by event localization using metadata.

The constraints used on the camera parameters are hard
and might result in reduced accuracy of the event location
due to sensor noise and bias. Such a limitation can be over-
come by using a probabilistic framework. Our future work
will focus on developing such a framework and extending
it for augmenting with the visual analysis. There could be
multiple events present at the same time within a small geo-
neighborhood, such as in amusement parks. In such a case,
since cameras are viewing different events, current approach
may not be able to locate any of the events correctly.
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